基于深度学习的数字化装备故障诊断研究综述
DOI:
CSTR:
作者:
作者单位:

陆军工程大学石家庄校区

作者简介:

通讯作者:

中图分类号:

基金项目:

全军军事类研究生资助课题(JY2021C093)


Overview of Research on Fault Diagnosis of Digital Equipment Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    数字化装备具有结构复杂、技术密集、信息化程度高等特点,传统的故障诊断方法需要拆装的部件多、故障定位准确率低,而深度学习能够从装备原始数据中挖掘有价值且敏感的特征,适合用于数字化装备的智能故障诊断;为此,首先进行了部队数字化装备故障诊断的现实困境和挑战分析,阐述了国内外数字化装备维修保障的研究现状,而后总结了装备故障诊断的主要方法和研究应用进展,重点将深度学习在装备故障诊断领域的研究成果进行了梳理,最后结合实际提出了基于深度学习方法实现数字化装备故障诊断的3种研究思路。

    Abstract:

    Digital equipment has the characteristics of complex structure,intensive technology ,and high level of information.Traditional fault diagnosis methods require multiple components to be disassembled and have low accuracy in fault localization.But deep learning can extract valuable and sensitive features from equipment raw data,making it suitable for intelligent fault diagnosis of digital equipment.For this purpose,the practical difficulties and challenges of digital equipment fault diagnosis in the military were first analyzed,and the research status of digital equipment maintenance support at home and abroad was elaborated;then,the main methods and research progress of equipment fault diagnosis were summarized,with a focus on sorting out the research results of deep learning in the field of equipment fault diagnosis;finaiiy,three research ideas for implementing digital equipment fault diagnosis based on deep learning methods were proposed in combination with practical applications.

    参考文献
    相似文献
    引证文献
引用本文

刘奥林,古平,赵张鹏.基于深度学习的数字化装备故障诊断研究综述计算机测量与控制[J].,2024,32(5):1-7.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-26
  • 最后修改日期:2023-07-08
  • 录用日期:2023-07-10
  • 在线发布日期: 2024-05-22
  • 出版日期:
文章二维码