摘要:高速公路车辆车速、车距、行驶方向等因素都是动态变化的,受外界环境干扰,采集到的目标车辆状态特征数据可能存在噪声,导致车辆变道轨迹预测存在误差,为此提出基于长短期记忆网络的高速公路车辆变道轨迹预测模型,有效预测高速公路车辆变道轨迹,改善车辆行驶条件,保障其安全运行。通过激光雷达、GPS等装置采集目标车辆交通数据,将其合理组合成目标车辆状态观测特征向量,并构建相应的特征向量矩阵,将所构建目标车辆状态观测特征向量矩阵作为1层卷积神经网路输入,提取目标车辆状态观测特征向量潜在特征后,以1层卷积神经网络输出结果为双向长短期记忆网络有效输入,经过无数次模型训练后,输出目标车辆变道轨迹预测结果。实验结果表明:该模型可有效预测高速公路车辆变道轨迹,预测出的轨迹横纵坐标误差极低,能够得到较为理想的高速公路车辆变道轨迹预测结果。