基于NB-IoT的UPS智能在线监测系统的设计
DOI:
CSTR:
作者:
作者单位:

西安科技大学

作者简介:

通讯作者:

中图分类号:

基金项目:

西安市碑林区科技计划项目(GX2333)


Design of UPS Intelligent Online Monitoring System Based on NB IoT
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对UPS机房在运行过程中无人监守,工作人员无法及时排查故障的问题,设计并实现了一套基于ARM和NB-IoT的UPS智能在线监测系统,由检测终端、云服务器和监管中心组成;检测终端使用各类传感器和检测电路获取多个UPS设备的输入输出电压和电流、负载率、蓄电池电量等数据以及机房温湿度环境参数,通过无线模块发送给云服务器,监管中心从云服务器获取数据,用户可以登录监管中心远程查询UPS的工作数据;经测试,系统能够实现对UPS各项数据的采集和无线传输,可以通过监管中心实时查询UPS工作状态以及下发指令,能达到实时监控的效果;具有数据测量准确,实时性响应良好等特点,减少了管理人员的工作量,提高了UPS的管理效率。

    Abstract:

    Aiming at the problem that the Uninterruptible Power System(UPS) room is unattended during operation and staff cannot timely troubleshoot faults, a UPS intelligent online monitoring system based on Advanced RISC Machine(ARM) and the Narrow Band Internet of Things(NB-IoT) is designed and implemented, consisting of a detection terminal, cloud server, and regulatory center. The detection terminal uses various sensors and detection circuits to obtain input and output voltage and current, load rate, battery power, and other data of multiple UPS devices, as well as temperature and humidity environmental parameters of the computer room. It sends them to the cloud server through wireless modules, and the supervision center obtains data from the cloud server. Users can log in to the supervision center to remotely query the working data of UPS. After testing, the system can achieve the collection and wireless transmission of various UPS data, and can query the UPS working status and issue instructions in real-time through the regulatory center, achieving the effect of real-time monitoring. It has the characteristics of accurate data measurement and good real-time response, reducing the workload of management personnel and improving the management efficiency of UPS.

    参考文献
    相似文献
    引证文献
引用本文

宋汝浩,李成,张泽,李科遥,马锦毅.基于NB-IoT的UPS智能在线监测系统的设计计算机测量与控制[J].,2024,32(3):57-62.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-11
  • 最后修改日期:2023-08-09
  • 录用日期:2023-05-24
  • 在线发布日期: 2024-04-01
  • 出版日期:
文章二维码