基于卷积神经网络的滚动轴承故障诊断方法
DOI:
CSTR:
作者:
作者单位:

海军航空大学

作者简介:

通讯作者:

中图分类号:

TN911.23;TP206.3

基金项目:

国家部委预研基金资助(9140A27020214JB1446)


Bearing fault diagnosis algorithm based on convolutional neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了简单、准确地进行轴承故障诊断,结合深度学习理论,对基于卷积神经网络的滚动轴承故障诊断方法进行了研究。首先,选用了结构相对简单的LeNet5卷积神经网络;然后,对轴承振动信号原始数据进行截取和归一化处理后直接生成生成二维矩阵作为神经网络输入;接着,优选卷积核大小、批大小、学习率及迭代次数等网络模型参数;最后,应用sigmoid函数进行多标签分类。实验结果表明,该方法能有效识别正常状态及不同损伤程度下的内圈、外圈、滚动体故障状态,识别准确率达到99.50%以上水平。基于卷积神经网络的滚动轴承故障诊断方法不仅在一定程度上可以简化故障诊断的过程,而且可以充分利用卷积神经网络模型的优势实现高效准确地故障诊断。

    Abstract:

    In order to diagnose the bearing fault simply and accurately, combined with deep learning theory, a mode based on convolutional neural network(CNN) was proposed. Firstly, the LeNet5 CNN with simple model architecture was chosed;Secondly, using the raw data of the bearing vibration signal which is intercepted and normalized, a two-dimensional matrix is generated directly as the input of CNN; Thirdly, the convolution, kernel batch, learning ratesize and the iterations was optimized. Finally, the sigmoid function was choiced to classify. The experimental results show that the method can identify the normal, inner ring fault, outer ring fault and rolling fault effectively and the recognition accuracy can reach a level of over 99.50%. Bearing fault diagnosis algorithm based on convolutional neural network not only simplifies the process of fault diagnosis to a certain extent, but also fully utilizes the advantages of CNN models to achieve efficient and accurate fault diagnosis.

    参考文献
    相似文献
    引证文献
引用本文

刘林密,崔伟成,李浩然,桑德一.基于卷积神经网络的滚动轴承故障诊断方法计算机测量与控制[J].,2023,31(9):9-15.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-01
  • 最后修改日期:2023-04-17
  • 录用日期:2023-04-17
  • 在线发布日期: 2023-09-18
  • 出版日期:
文章二维码