基于机器学习的量子通信激光器功率控制系统设计
DOI:
CSTR:
作者:
作者单位:

军事科学院军事科学信息研究中心

作者简介:

通讯作者:

中图分类号:

基金项目:


Design of Power Control System for Quantum Communication Laser Based on Machine Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    量子通信激光器的频段的带宽更宽,在无线通信方面具有潜在的超高传输容量,也能够发挥快速波载的应用特性。但受功率控制的不协调因素限制,量子通信激光器在数据传输中脉冲功率会产生波动,导致传输带宽产生畸变,研究基于机器学习的量子通信激光器功率控制系统设计方法。以获取不同的控制指令为前提条件,将单片机和FPGA作为量子通信激光器主控单元。采用A/D作为转换单元,通过串行封装设计转换电路。基于机器学习分析电流与电压关系,实现系统硬件设计;构建量子通信激光机通信检测单元,在多量子耦合关系下,设定激光器有源区控制形式,基于介电常数分析激光器运行模式,对应量子通信功率反馈条件。基于机器学习中Q函数算法,寻找功率最优控制方案,完成系统软件设计。实验结果表明:以小信号增益为测试的变量条件,应用本文系统控制量子通信激光器脉冲功率,能够在50次往返过程中实现功率的稳定控制,且脉冲宽度没有发生畸变,具有应用效果。

    Abstract:

    Quantum communication lasers have wider bandwidth in the frequency band, have potential ultra-high transmission capacity in wireless communication, and can also play an important role in the application of fast wave carrier. However, due to the incompatibility of power control, the pulse power of quantum communication lasers will fluctuate during data transmission, resulting in distortion of transmission bandwidth. The design method of power control system for quantum communication lasers based on machine learning is studied. On the premise of obtaining different control instructions, the microcontroller and FPGA are used as the main control unit of the quantum communication laser. A/D is used as the conversion unit, and the conversion circuit is designed by serial encapsulation. The relationship between current and voltage is analyzed based on machine learning, and the hardware design of the system is realized; The communication detection unit of the quantum communication laser machine is constructed. Under the multi quantum coupling relationship, the control form of the active area of the laser is set, and the operating mode of the laser is analyzed based on the dielectric constant, corresponding to the power feedback conditions of the quantum communication. Based on the Q function algorithm in machine learning, the optimal power control scheme is found and the system software is designed. The experimental results show that using the small signal gain as the test variable condition, the system in this paper can control the pulse power of the quantum communication laser, achieve stable power control in 50 round trips, and the pulse width is not distorted, so it has an application effect.

    参考文献
    相似文献
    引证文献
引用本文

杨俊岭.基于机器学习的量子通信激光器功率控制系统设计计算机测量与控制[J].,2024,32(2):129-134.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-02-28
  • 最后修改日期:2023-04-07
  • 录用日期:2023-04-10
  • 在线发布日期: 2024-03-20
  • 出版日期:
文章二维码