改进SegNet+CRF高分辨率遥感影像建筑物提取方法
DOI:
CSTR:
作者:
作者单位:

渤海大学信息科学技术学院

作者简介:

通讯作者:

中图分类号:

基金项目:

自然资源部测绘科学与地球空间信息技术重点实验室开放研究基金课题(2020-2-4);辽宁省教育厅重点攻关项目(LZ2020004)


Building extraction from high remote sensing images based on Improved SegNet+CRF Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    将传统的语义分割SegNet网络用于高分辨率遥感影像的建筑物提取时,分割的建筑物存在边界模糊、精度较低、错检漏检等问题。为了解决上述问题,提出一种改进SegNet网络+CRF语义分割方法。编码阶段的最低分辨率层引入空洞金字塔池化模型,通过并行的空洞卷积操作扩大特征提取的感受野;解码阶段构建特征金字塔实现特征多尺度融合,弥补上采样过程中丢失的特征信息;最后,预测图像送入全连接条件随机场模型进行后处理,优化提取的建筑物边缘。实验表明,相较于原SegNet网络,改进方法的建筑物提取像素精度、召回率、平均交并比分别提高了0.48%、1.29%、2.36%。

    Abstract:

    When using the traditional semantic segmentation SegNet network to extract buildings from high-resolution remote sensing images, there are some problems, such as fuzzy boundary, low accuracy, error detection and missing detection. In order to solve the above problems, an improved SegNet+CRF semantic segmentation method is proposed. The SegNet model is improved by adopting Atrous Spatial Pyramid Pooling(ASPP) in the encoding stage to extract the feature maps of different receptive fields of an image through multiple hole convolutions with designed expansion rates. In the decoding stage, construct Feature Pyramid Networks(FPN) to realize multi-scale feature fusion and reduce feature detail loss. Further, the prediction images are image-processed based on the fully connected conditional random field(CRF)model to optimize the building edges. Experimental results in test areas are evaluated quantitively and visionally, which show that the improved model has the higher accuracy than that of the original SegNet deep learning model, with the average pixel accuracy, recall and average cross-over ratio by 0.48% , 1.29% and 2.36% respectively. The improved method is able to acquire buildings with clear and accurate boundaries, and can be extended for recognition applications of in remote sending images for urban mapping, management and planning.

    参考文献
    相似文献
    引证文献
引用本文

赵昊罡,崔红霞,张芳菲,顾海燕,穆潇莹.改进SegNet+CRF高分辨率遥感影像建筑物提取方法计算机测量与控制[J].,2023,31(7):177-183.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-10-28
  • 最后修改日期:2022-12-05
  • 录用日期:2022-12-06
  • 在线发布日期: 2023-07-12
  • 出版日期:
文章二维码