基于XGBoost的民航飞机发动机性能参数预测模型
DOI:
CSTR:
作者:
作者单位:

1.中国民航大学工程技术训练中心;2.中国民航大学电子信息与自动化学院

作者简介:

通讯作者:

中图分类号:

V263.6?????????????????

基金项目:

天津市自然科学基金,多元投入青年项目,21JCQNJC00710,面向复杂航电运行安全的分布式融合仿真场景生成及边界自适应测试。


Aircraft engine performance parameters prediction Model based on XGBoost
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高民航飞机发动机性能参数的预测精度,本文提出一种基于模糊推理和XGBoost算法的发动机性能参数预测方法。对发动机进行总体性能分析,确定油门杆位置、气压高度、总温、全重、马赫数及飞行阶段为影响发动机性能参数的主要因素。其次采用模糊推理对快速存取记录器(QAR)数据进行纵向飞行阶段划分,消除人为划分训练数据对预测精度的主观影响。最后,建立各发动机性能参数的XGBoost预测模型,并与多种预测模型进行对比实验。实验结果表明:对发动机N1、燃油流量参数的预测,XGBoost预测模型相比支持向量回归(SVM)、线性回归模型和BP神经网络,其精度更高且不需要对训练数据进行缩放。

    Abstract:

    In order to improve the prediction accuracy of aircraft engine performance parameters, a new aeroengine performance prediction method based on fuzzy theory and XGBoost algorithm was proposed. Through the overall performance analysis of aeroengine, the angle of throttle, altitude, total temperature, gross weight, mach number and flight phase were identified as the main factors affecting aeroengine performance; Secondly, the fuzzy theory was used to divide the QAR data into vertical flight phase data, eliminating the subjective influence on prediction accuracy, which caused by artificially dividing the training data. Finally, XGBoost prediction model of aeroengine parameters was established, and compared with various prediction models. For the prediction of aeroengine N1 and fuel flow parameters, the experimental results show that the XGBoost prediction model which does not require scaling of training data has higher accuracy than support vector regression (SVM), liner regression models and BP neural network.

    参考文献
    相似文献
    引证文献
引用本文

樊智勇,王振良,刘哲旭.基于XGBoost的民航飞机发动机性能参数预测模型计算机测量与控制[J].,2023,31(6):46-52.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-10-18
  • 最后修改日期:2022-11-19
  • 录用日期:2022-11-21
  • 在线发布日期: 2023-06-15
  • 出版日期:
文章二维码