摘要:为了提高图像的特征质量,保证最后提取到的特征高度精炼,提出了一种新的方法;该方法首先将低分辨率图像经过小波变换分解成高频分量和低频分量,并结合插值法进行插值,最后通过小波逆变换得到高分辨率图像来为后续的特征提取提供高质量的图片输入;接着,选取ResNet-50网络作为基础网络,将Efficient Channel Attention(ECA)模块与ResNet残差结构结合形成一个全新的ECA-ResNet50模块,ECA模块具有的通道级的注意力机制,可以让整个网络更加专注于提取显著特征;经实验测试,该方法对于图像特征提取的质量有着明显的提升,均方误差下降可达6.65;结果表明,该方法可行有效,具有良好的工程应用前景;