内外源注意的无人系统智能感知应用研究
DOI:
CSTR:
作者:
作者单位:

1.中航成都无人机系统股份有限公司;2.中山大学智能工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目)(61975151);四川省科技计划资助(2020YFG0472)


Application Research on Intelligent Perception of Unmanned System based on Internal and External Attention
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对未来无人系统智能化以及多无人系统协同感知与认知发展需求,亟需解决信息过载以及跨平台多源感知信息融合的科学问题,本文提出通过研究仿生内源性和外源性注意力的调节作用机理, 探索多源注意机制对无人系统智能感知系统调节作用机制,对其映射异构多源感知器与行为决策控制的作用机理进行研究;结合采用脑认知能够联合来自不同感官通道的线索对外部世界中的物体和事件实现快速高效信息过滤和异构多源认知,并采用不同的参照系来表征物体的特征和位置,构建一种基于仿生多源注意机制的智能感知与信息处理框架,对工程化实现无人系统智能感知与认知系统具有一定的设计参考价值。

    Abstract:

    In view of the future intelligentization of unmanned systems and the need for collaborative perception and cognitive development of multiple unmanned systems, there is an urgent need to solve the scientific problems of information overload and cross-platform multi-source perception information fusion. This paper proposes to study bionic endogenous and exogenous The regulation mechanism of force, explore the regulation mechanism of multi-source attention mechanism on the intelligent perception system of unmanned systems, and study the mechanism of its mapping heterogeneous multi-source perceptions and behavior decision control. Combined with the use of brain cognition, it can combine clues from different sensory channels to achieve rapid and efficient information filtering and heterogeneous multi-source cognition of objects and events in the external world, and use different reference systems to represent the features and positions of objects to construct a This intelligent perception and information processing framework based on the bionic multi-source attention mechanism has a certain design reference value for the engineering realization of the intelligent perception and cognitive system of unmanned systems.

    参考文献
    相似文献
    引证文献
引用本文

唐勇,周典乐,王涛.内外源注意的无人系统智能感知应用研究计算机测量与控制[J].,2022,30(8):283-288.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-04-25
  • 最后修改日期:2022-04-27
  • 录用日期:2022-04-28
  • 在线发布日期: 2022-08-25
  • 出版日期:
文章二维码