基于物联网技术的货车载荷实时监测系统设计
DOI:
CSTR:
作者:
作者单位:

浙江工业大学

作者简介:

通讯作者:

中图分类号:

基金项目:


Design of Truck Load Real - time Monitoring System Based on Internet of Things
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前货车载荷监测主要依靠固定式称重的现状,设计了一种基于物联网技术的货车载荷实时监测系统。系统以嵌入式系统和多传感器融合算法为核心,由信号采集,信号处理与传输,云服务器等单元组成。采用主控芯片STM32F105RCT6和电阻式应变片传感器,实现数据采集与数据处理;处理后的信息通过无线通信模块发送至云端,云端服务器利用神经网络技术对所得到的数据进行拟合处理,实现了用户在远程情况下对货车的载重量进行实时的监测与管控。实验测试证明,本系统能够准确,高效地采集到货车载荷量,并且所测货车载荷量的精度在2.75%以内,无线传输效果稳定,并能将载荷数据实时上传至云平台,反馈于用户。本系统综合运用了智能传感器、物联网和云计算等技术,具有实时强、精度高、装配便捷等特点。

    Abstract:

    Aiming at the current situation that truck load monitoring mainly relies on fixed weighing, a real-time truck load monitoring system based on Internet of Things technology is designed. The system is based on embedded system and multi-sensor fusion algorithm, and consists of signal acquisition, signal processing and transmission, cloud server and other units. The main control chip STM32F105RCT6 and resistive strain gauge sensor are used to realize data acquisition and data processing; the processed information is sent to the cloud through the wireless communication module, and the cloud server uses neural network technology to fit the obtained data, realizing user Real-time monitoring and control of the truck's load capacity in a remote situation. The experimental test proves that the system can accurately and efficiently collect the load of the truck, and the accuracy of the measured load of the truck is within 2.75%, the wireless transmission effect is stable, and the load data can be uploaded to the cloud platform in real time and fed back to the user. This system comprehensively uses technologies such as smart sensors, Internet of Things and cloud computing, and has the characteristics of strong real-time, high precision, and convenient assembly.

    参考文献
    相似文献
    引证文献
引用本文

杨泽文,侯彬,李秦峰,王宪保.基于物联网技术的货车载荷实时监测系统设计计算机测量与控制[J].,2022,30(7):116-122.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-03-07
  • 最后修改日期:2022-03-24
  • 录用日期:2022-03-24
  • 在线发布日期: 2022-07-19
  • 出版日期:
文章二维码