基于实例和属性加权朴素贝叶斯的电气事故分类研究
DOI:
作者:
作者单位:

1.国网宁夏电气有限公司营销服务中心;2.四川大学电气工程学院

作者简介:

通讯作者:

中图分类号:

TP181

基金项目:

国网宁夏电气有限公司营销服务中心(国网宁夏电气有限公司计量中心)科研项目(JG29YX210027)


Research on Electrical Accident Classification Based on Instance and Attribute Weighted Naive Bayes
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为实现对电气事故快速、准确和动态的分类,提出一种有机结合实例和属性加权的朴素贝叶斯电气事故分类方法(AIWNB)。朴素贝叶斯分类方法中的先验概率和条件概率采用两种实例加权方式加以改进,积极实例权值取决于各属性值频度的统计值,而消极实例权值通过逐条计算训练实例与测试实例间的相关性加以确定。属性权值则基于互信息定义为属性-属性相关性和属性-类相关性之间的残差。所提出的AIWNB方法将属性加权和实例加权有机结合在朴素贝叶斯统一框架内,利用高低压用户的电气实测数据进行验证,实验结果表明,与朴素贝叶斯相比,加权后的朴素贝叶斯方法更具竞争性,准确率和F1分数可提升3.09%和9.39%,证明所提的AIWNB算法在电气事故分类的实用性及有效性,并可推广至其他分类情形。

    Abstract:

    In order to achieve rapid, accurate and dynamic classification of electrical accidents, an electrical accident classification model based on attribute and instance weighted naive bayes (AIWNB) is proposed. The prior probability and conditional probability in the naive Bayes classification method are improved by using two instance weighting methods. The eager instance weight depends on the statistical value of the frequency of each attribute value, and the lazy instance weight is determined by calculating the correlation between the training instance and the test instance one by one. Attribute weight is defined as the residual between attribute-attribute correlation and attribute-class correlation based on mutual information. The proposed AIWNB method organically combines attribute weighting and instance weighting in a unified framework of Naive Bayes, use the electrical measurement data of high and low voltage users to verify. Experimental results show that compared with pure Naive Bayes, the weighted Naive Bayes is more competitive, and the accuracy and F1 score can be increased by 3.09% and 9.39%, which proves the prac-ticality and effectiveness of the algorithm in the classification of electrical accidents, and the proposed method can be extended to other classification situations.

    参考文献
    相似文献
    引证文献
引用本文

舒一飞,郭汶昇,樊博,康洁滢,许诗雨,杨林.基于实例和属性加权朴素贝叶斯的电气事故分类研究计算机测量与控制[J].,2022,30(5):169-174.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-11-22
  • 最后修改日期:2021-12-22
  • 录用日期:2021-12-31
  • 在线发布日期: 2022-05-25
  • 出版日期:
文章二维码