基于互相关能比熵和BiGRU-GRU的轧机关键零部件早期故障诊断
DOI:
CSTR:
作者:
作者单位:

重庆交通大学

作者简介:

通讯作者:

中图分类号:

基金项目:


Early fault diagnosis of key parts of rolling mill based on cross-correlation energy ratio entropy and BIGRU-GRU
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    摘要:轧机作为机械制造行业的重要设备,工况环境复杂,其关键零部件极易发生故障,对其进行早期故障诊断,趋势预测存在困难。对此本文以轴承为例,提出了一种新型性能退化指标用于检测出现早期故障的时刻。对于防止轧机工作环境复杂的问题,首先要对采集到的样本信号进行降噪,实现对噪声信号的去除,之后利用互相关函数对样本前后数据进行互相关分析,然后求分析所得数据的所有极值点能量与总能量得比值,最后将做的比值带入信息熵公式,即为最终得性能退化指标,即互相关能比熵,并通过包络谱分析验证指标的有效性。针对轴承性能退化趋势预测的问题,利用门控循环单元网络(Gate Recurrent Unit, GRU)和双向门控循环单元网络(Bidirectional Gate Recurrent Unit, GRU)各自的优点建立了BiGRU-GRU网络。将采集到的数据分为训练数据和测试数据,在训练数据中训练之后,对测试数据进行预测,实现了对轴承性能退化趋势的预测。并通过对比实验证明了所提性能评估指标和网络比一般指标和网络具有更好的效果。

    Abstract:

    Abostr: As an important equipment for metallurgy, the rolling mill has complex working conditions, and its key parts are prone to failure, so it is difficult to make early fault diagnosis and trend prediction. Taking bearing as an example, a new performance degradation index is proposed to detect the moment of early failure. To prevent mill work environment complex problems, first of all samples were collected for signal de-noising, implementation, to eliminate the noise signal after the cross-correlation function is used to analyse the data before and after the sample cross-correlation analysis, then analyze the data from all of the extreme value point energy and total energy ratio, ratio into the information entropy formula, finally will do for ultimate performance degradation index, namely It is the cross correlation energy ratio entropy, and the validity of the index is verified by envelope spectrum analysis. Aiming at the problem of bearing performance degradation trend prediction, BiGRU-GRU network is established based on the respective advantages of Gate Recurrent Unit (GRU) and Bidirectional Gate Recurrent Unit (BiGRU). The collected data are divided into training data and test data. After training in the training data, the test data are predicted to realize the prediction of bearing performance degradation trend. Comparative experiments show that the proposed performance evaluation index and network have better effects than the general index and network.

    参考文献
    相似文献
    引证文献
引用本文

胡睿.基于互相关能比熵和BiGRU-GRU的轧机关键零部件早期故障诊断计算机测量与控制[J].,2022,30(2):95-102.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-11-15
  • 最后修改日期:2021-12-21
  • 录用日期:2021-12-31
  • 在线发布日期: 2022-02-22
  • 出版日期:
文章二维码