车载激光雷达点云数据处理关键技术
DOI:
CSTR:
作者:
作者单位:

中北大学 信息与通信工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

山西省回国留学人员科研资助项目(项目编号 2017-091)


Overview of key technologies for point cloud data processing of vehicle Lidar
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    激光雷达具有探测精度高、穿透能力强、能够三维成像等诸多优点,故自动驾驶车辆常常搭载激光雷达来对车身周围环境进行感知。车辆实现自动驾驶的关键技术包括车载激光雷达信号的发射、接收和对点云数据的处理,通过对接收到的点云数据进行处理可以使车辆准确的感知到当前路面状况并做出相应操作。文章重点介绍了车载激光雷达点云数据处理中的关键技术,对每个关键技术中常用算法的基本原理、优缺点和改进等进行了阐述,以期为车载激光雷达点云数据处理提供参考。

    Abstract:

    Lidar has many advantages such as high detection accuracy, strong penetrating ability, and three-dimensional imaging capability. Therefore, Autonomous vehicle are often equipped with Lidar to perceive the surrounding environment of the vehicle body. The key technologies of Autonomous vehicle include transmitting and receiving lidar signal and processing point cloud data. the vehicle can accurately perceive the current road conditions and make corresponding operations. This paper mainly introduces the key technologies in point cloud data processing of vehicle lidar, and expounds the basic principles, advantages and disadvantages and improvements of common algorithms in each key technology. in order to provide a reference for point cloud data processing of vehicle-mounted lidar.

    参考文献
    相似文献
    引证文献
引用本文

党亚南,田照星,郭利强.车载激光雷达点云数据处理关键技术计算机测量与控制[J].,2022,30(1):234-238.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-11-03
  • 最后修改日期:2021-12-10
  • 录用日期:2021-12-10
  • 在线发布日期: 2022-01-24
  • 出版日期:
文章二维码