PLC硬件结构的水电站故障监测系统及故障识别
DOI:
CSTR:
作者:
作者单位:

国能大渡河沙坪发电有限公司

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:


PLC hardware structure hydropower station fault monitoring system and fault identification
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有水电站故障监测系统识别效率低、工作难度大等问题,提出了一种基于巡检机器人视觉识别的故障监测方法,并将其应用于水轮机调节系统(Hydro-Turbine Governing System,HTGS)故障诊断问题。通过可编程逻辑控制器(Programmable Logic Controller,PLC)保证巡检机器人的稳定工作运行,通过非线性输出频率响应函数(Nonlinear Output Frequency Response Functions,NOFRFs)分析故障参数的特性。利用方向梯度直方图(Histograms of Oriented Gradients,HOG)作为模板,采用可变形组件模型(Deformable Part Model,DPM)算法实现HTGS的故障识别。试验表明,本研究方法处理2GB故障数据所耗时间为40s。

    Abstract:

    Aiming at the problems of low identification efficiency and high difficulty of the existing fault monitoring system of hydropower stations, a fault monitoring method based on the visual recognition of the inspection robot is proposed and applied to the fault of the Hydro-Turbine Governing System (HTGS) Diagnose the problem. The programmable logic controller (Programmable Logic Controller, PLC) ensures the stable operation of the inspection robot, and analyzes the characteristics of the fault parameters through the nonlinear output frequency response functions (Nonlinear Output Frequency Response Functions, NOFRFs). Using Histograms of Oriented Gradients (HOG) as a template, the Deformable Part Model (DPM) algorithm is used to realize the fault identification of HTGS. Experiments show that the method used in this study to process 2GB fault data takes 40s.

    参考文献
    相似文献
    引证文献
引用本文

熊玺,汪广明,童松,何滔,黄赛枭. PLC硬件结构的水电站故障监测系统及故障识别计算机测量与控制[J].,2022,30(10):17-21.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-10-29
  • 最后修改日期:2021-12-03
  • 录用日期:2021-12-06
  • 在线发布日期: 2022-11-01
  • 出版日期:
文章二维码