基于工业视觉的水体表面污染监测系统
DOI:
CSTR:
作者:
作者单位:

长沙有色冶金设计研究院有限公司研发中心

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划资助项目“面向有色金属冶炼流程精细管控的网络协同制造关键技术与平台研发”(2019YFB1704705);国家重点研发计划资助项目“盐湖化工产业集聚区域网络协同制造集成技术研究与应用示范”(2020YFB1713803)


Water surface pollution monitoring system based on Industrial Vision

Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对工矿企业突发性水污染事故具有明显悬浮物或明显颜色变化,且多数污染可通过表层水体视觉方式直观判断等特点,本文基于突发性水污染事故监测需求分析,研究了一种基于工业视觉的水体表面污染监测系统。针对连续多帧图像信息受水流流速、颗粒悬浮物和系统噪声等影响问题,提出了随机扰动信号滤波方法和基于颜色信息评价的多级图像信息调节方法,进而采用优化神经网络建立污染分析模型,并开发了监测装置对水体图像进行实时分析,实现污染状态快速判断。在某冶炼企业应急站投用该系统后,降低了劳动强度,缩短判断时间,提高判断准确度,降低环保事故发生率、 减少岗位人员数量、降低成本,取得了显著的应用效果。

    Abstract:

    Sudden water pollution accidents in industrial and mining enterprises have obvious suspended solids or obvious color changes, and most pollution can be judged intuitively through the visual way of surface water, based on the monitoring demand analysis of sudden water pollution accidents, a water surface pollution monitoring system based on industrial vision is studied in this paper. Aiming at the problem that continuous multi frame image information is affected by water flow velocity, particle suspended solids and system noise, a random disturbance signal filtering method and a multi-level image information adjustment method based on color information evaluation are proposed. Then, the pollution analysis model is established by using optimized neural network, and a monitoring device is developed to analyze the water image in real time to realize the rapid judgment of pollution state. After the system is used in the emergency station of a smelting enterprise, it reduces the labor intensity, shortens the judgment time, improves the judgment accuracy, reduces the incidence of environmental protection accidents, reduces the number of post personnel and reduces the cost, and has achieved remarkable application results.

    参考文献
    相似文献
    引证文献
引用本文

曾祥吉,鄢锋,李勇刚,潘岩,杨静雅,施耘.基于工业视觉的水体表面污染监测系统计算机测量与控制[J].,2022,30(2):44-50.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-09-10
  • 最后修改日期:2021-10-26
  • 录用日期:2021-10-28
  • 在线发布日期: 2022-02-22
  • 出版日期:
文章二维码