基于模态分解与特征匹配的串联故障电弧识别方法研究
DOI:
作者:
作者单位:

山东建筑大学 信息与电气工程学院

作者简介:

通讯作者:

中图分类号:

TM501

基金项目:

山东省重点研发计划重大科技创新工程项目(2019JZZY010115)


Research on identification method of series arc faults based on modal decomposition and feature matching
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    串联故障电弧具有隐蔽性强、短时释放热量大等特点,过流型断路器难以及时发现或采取动作,极易引发电气火灾,造成重大损失和人员伤亡。因此实现建筑内串联故障电弧的快速可靠识别与监测具有重大意义。按照线路负载类型对电气线路高频电气参数运行数据进行分析,利用结合串联电弧故障特征的互补集合经验模态分解(Complementary Ensemble Empirical Mode Decomposition, CEEMD)方法,实现对电气线路串联电弧故障的识别。经实验验证,并与灰度梯度共生矩阵与支持向量机(GLGCO-SVM)、时域可视卷积神经网络(TDV-CNN)等方法识别结果进行对比,识别准确率达到94.8%及以上。

    Abstract:

    Series fault arc has the characteristics of strong concealment and large heat release in short time. It is difficult for overcurrent circuit breakers to detect or take action in time, which is easy to cause electrical fire and cause significant losses and casualties. Therefore, it is of great significance to realize the rapid and reliable identification and monitoring of series fault arc in buildings. According to the line load type, the operation data of high frequency electrical parameters of electrical lines are analyzed, and the CEEMD combined with the characteristics of series arc fault is used to realize the identification of series arc fault of electrical lines. Compared with the recognition results of GLGCO-SVM and TDV-CNN, the recognition accuracy reaches 94.8 % and above.

    参考文献
    相似文献
    引证文献
引用本文

陈浩,阎俏,张桂青,曹建荣,张汉元,庄园,任飞,田丰.基于模态分解与特征匹配的串联故障电弧识别方法研究计算机测量与控制[J].,2021,29(11):53-60.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-08-19
  • 最后修改日期:2021-09-10
  • 录用日期:2021-09-14
  • 在线发布日期: 2021-11-22
  • 出版日期:
文章二维码