基于LSTM算法的门座式起重机减速箱故障诊断研究
DOI:
CSTR:
作者:
作者单位:

广东省特种设备检测研究院珠海检测院

作者简介:

通讯作者:

中图分类号:

基金项目:

广东省特种设备检测研究院科技项目(2020JD-2-04);广东省特种设备检测研究院科技项目(2020JD-2-05);广东省市场监督管理局科技项目(2018CT10);国家市场监督管理总局技术保障专项项目(2019YJ014);


Research On Fault Diagnosis of Gearbox of Portal Crane Based on LSTM Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为实现门座式起重机减速箱机械故障的智能诊断和分类,运用长短期记忆网络构建了门座式起重机减速箱机械故障的自动诊断分类模型。首先设计并使用了基于labview的数据采集系统对门座式起重机的复合故障数据进行了采集,结合东南大学公开的齿轮箱故障数据建立了数据集。然后用数据增强的方法对数据进行预处理,接着采用长短期记忆神经网络,构建门座式起重机减速箱机械故障诊断模型。最后使用测试数据集对模型的诊断分类准确性进行了验证实验,结果表明该诊断模型能快速准确的对门座式起重机减速箱的机械故障进行自动诊断和分类,实现了96.8%的诊断分类准确率,与传统的基于CNN的诊断分类模型相比,准确率提高了4.1%,为下一步便携式智能诊断仪器的开发和应用奠定了一定的理论基础。

    Abstract:

    In order to realize the intelligent diagnosis and classification of mechanical failure of portal crane gearbox, the automatic diagnosis and classification model of mechanical failure of portal crane gearbox is constructed by using long-term and short-term memory network. Firstly, a data acquisition system based on labview is designed and used to collect the composite fault data of portal crane, and a data set is established based on the gearbox fault data published by Southeast University. Then the data is preprocessed by data enhancement method, and then the mechanical fault diagnosis model of portal crane gearbox is constructed by using long-term and short-term memory neural network. Finally, the diagnostic classification accuracy of the model is verified by the test data set. The results show that the diagnostic model can automatically diagnose and classify the mechanical faults of the portal crane gearbox quickly and accurately, and the diagnostic classification accuracy is 96.8%. Compared with the traditional diagnostic classification model based on CNN, the accuracy is improved by 4.1%, which lays a theoretical foundation for the development and application of portable intelligent diagnostic instruments in the next step.

    参考文献
    相似文献
    引证文献
引用本文

梁敏健,彭晓军,刘德阳.基于LSTM算法的门座式起重机减速箱故障诊断研究计算机测量与控制[J].,2021,29(12):67-72.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-07-16
  • 最后修改日期:2021-08-20
  • 录用日期:2021-08-23
  • 在线发布日期: 2021-12-24
  • 出版日期:
文章二维码