传感器测量误差下的非线性车辆队列控制
DOI:
CSTR:
作者:
作者单位:

长安大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学(62003054,71006401,51909008);陕西省重点研发计划项目(2020GY113,2019GY218);中央高校基本科研业务费资助项目(2020GY-113)。


Nonlinear vehicle platoon control with sensor measurement errors
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传感器测量误差对车辆队列的有效控制与稳定性研究存在较大影响。通常情况下,大多研究成果将传感器测量误差设定为分布规律已知的随机数列(如高斯分布,泊松分布等),以便采用特定的数理方法消除误差影响。然而对于控制系统中仅满足有界条件的测量误差,仍需开展进一步的深入研究。针对此类现状,以非线性车辆队列控制为研究对象,综合考虑车载传感器的有界测量误差与车辆之间的有向通信拓扑,设计一种基于滑模的车辆队列控制方法。该方法能有效解决有界传感器测量误差下的车辆队列控制问题。此外,在控制过程中利用预设性能控制(Prescribed Performance Control, PPC)理论,进一步约束车辆队列跟踪误差,确保车辆队列的队列稳定性。最后,通过数值仿真的方式验证本文所提出控制算法的有效性和可行性。

    Abstract:

    The sensor measurement errors have a strong influence on the effective control and the stability of vehicle platoon. Generally, most studies regard the sensor measurement errors as the random series (such as Gaussian, Poisson distribution) whose distributions are known, such that the specific mathematical methods can be employed to remove their impacts. However, there are no mature and effective approaches for the bounded measurement errors in the control system. With respect to this, the nonlinear vehicle dynamics is studied, and consider the bounded measurement errors of onboard sensors and the directed communication topology among vehicles, a sliding mode based control algorithm of vehicle platoon is proposed. This method can effectively address the vehicle platoon control problem with bounded sensor measurement errors. Moreover, by using prescribed performance control, the tracking error can be constrained, such that the string stability of vehicle platoon is guaranteed. Finally, the feasibility and effectiveness of the proposed control method are validated through numerical simulations.

    参考文献
    相似文献
    引证文献
引用本文

王鹏,左磊,朱旭.传感器测量误差下的非线性车辆队列控制计算机测量与控制[J].,2022,30(1):128-134.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-06-16
  • 最后修改日期:2021-07-27
  • 录用日期:2021-07-28
  • 在线发布日期: 2022-01-24
  • 出版日期:
文章二维码