基于UWB定位的缉毒犬训练跟踪录像小车设计
DOI:
CSTR:
作者:
作者单位:

青岛科技大学信息科学技术学院

作者简介:

通讯作者:

中图分类号:

基金项目:

科技部,国家重点研发计划子课题(2017YFB1400903)


Design of tracking video car for drug detection dog training based on UWB location
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统的缉毒犬培训过程中训练周期长,训练开销花费大等特点造成的缉毒犬资源供需不平衡;训导员训导过程中面临健康安全隐患和重复机械劳动等问题。提出采用超宽带模块定位缉毒犬的物理位置,基于移动目标定位跟踪算法设计开发了缉毒犬训练监督辅助系统。以基于树莓派控制的智能车为移动载体,添加摄像头拍摄缉毒犬的行踪同时将视频实时回传终端。在设计过程中,考虑超宽带模块定位精度、智能车与缉毒犬相对距离等方面对结果的影响,经实验测试实现摄像机及时准确跟踪录像缉毒犬功能,在保障定位准确度的同时提高了跟踪效率。

    Abstract:

    In view of the imbalance between supply and demand of drug detection dog resources caused by the long training cycle and high training cost in the traditional drug detection dog training process; Trainers face problems such as health and safety hazards and repetitive mechanical labor during their training. The physical position of the drug detection dog is located by the ultra-wideband module, and the training and supervision assistant system of the drug detection dog is designed and developed based on the moving target location and tracking algorithm. With the intelligent car controlled by Raspberry Pi as the mobile carrier, a camera is added to capture the whereabouts of drug-sniffing dogs and the video is transmitted back to the terminal in real time. In the design process, the positioning accuracy of the UWB module, the relative distance between the intelligent car and the drug detection dog and other aspects of the impact on the results need to be considered. After testing, Through the experiment test, the camera can timely and accurately track the video of drug-sniffing dogs, which ensures the positioning accuracy and improves the tracking efficiency.

    参考文献
    相似文献
    引证文献
引用本文

马兴录,唐亚男.基于UWB定位的缉毒犬训练跟踪录像小车设计计算机测量与控制[J].,2022,30(1):168-174.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-05-28
  • 最后修改日期:2021-07-01
  • 录用日期:2021-07-02
  • 在线发布日期: 2022-01-24
  • 出版日期:
文章二维码