摘要:随着互联网产业的发展,虚拟机创建速度慢、不易扩展、灵活性不足等缺点越来越凸显,容器技术的出现为这些问题提出了一种新的解决思路。而现有的调度算法仅考虑容器云集群中工作节点的内存、CPU等物理资源,没有考虑对容器云调度后的镜像分发过程有明显影响的网络负载率,导致容器调度任务等待时间过长,造成数据中心的资源浪费。鉴于粒子群优化算法在局部开采能力和全局探测方面有较强的优势,提出了一种基于模拟退火算法的粒子群优化算法(Simulated annealing particle swarm optimization algorithm,SA-PSO)的容器调度算法,通过使用模拟退火优化粒子群算法使其在算法初期跳出局部最优情况,提升算法性能。在Kubernetes平台实验过程中,SA-PSO调度算法相比Kubernetes的BalancedQosPriority算法,提升了整体节点资源利用率,显著减少任务最少等待时间;同时与标准PSO算法以及动态惯性权重PSO算法进行对比,不仅收敛能力有显著提升,并且相较标准PSO算法全局最优节点命中率提升近60%。