基于改进Mask R-CNN的卫星目标部位检测方法
DOI:
CSTR:
作者:
作者单位:

北京理工大学 宇航学院

作者简介:

通讯作者:

中图分类号:

TP183;V556.5

基金项目:


Satellite Target Part Detection Method Based on Improved Mask R-CNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对卫星部件维修更换、燃料加注、废弃卫星回收等空间在轨服务中需解决的目标卫星部位检测问题,在Mask R-CNN的基础上,改进其主干网络结构并缩减分类回归、Mask分支通道数,提出了一种改进的实例分割网络模型Ring-Engine-Mask R-CNN,使用实物模型图像和3ds Max生成的仿真图像建立了专用数据集,给出了一种基于深度学习的卫星目标部位检测方法。实验结果表明,该方法能较好的完成卫星星箭对接环和远地点发动机喷管两种目标部位的检测分割,相较于传统的网络模型,在缩小了网络规模的同时,具有更高精度和更快的检测速度。

    Abstract:

    Aiming at the target satellite detection problems that need to be solved in space on-orbit services such as satellite component maintenance and replacement, fuel refueling, and recycling of abandoned satellites, an improved instance segmentation network model Ring-Engine-Mask R-CNN is proposed on the basis of Mask R-CNN by improve the structure of its backbone network and reducing channels of classification, regression, Mask branch. The network uses physical model images and simulation images generated by 3ds Max to establish a dedicated dataset, and presents a satellite target detection method based on deep learning. The experimental results show that this method can complete the detection and segmentation task of the two target parts of the satellite marman ring and the apogee engine nozzle better. Compared with the traditional network model, it has a smaller model volume. Meanwhile, it has a higher detection accuracy and faster speed.

    参考文献
    相似文献
    引证文献
引用本文

杨钦宁,佘浩平,庞羽佳.基于改进Mask R-CNN的卫星目标部位检测方法计算机测量与控制[J].,2021,29(11):12-17.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-03-23
  • 最后修改日期:2021-04-18
  • 录用日期:2021-04-21
  • 在线发布日期: 2021-11-22
  • 出版日期:
文章二维码