基于物联网的分拣机器人故障检测系统设计
DOI:
作者:
作者单位:

新疆工程学院 信息工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:


Design of a Sorting Robot Fault Detection System Based on the IoT
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前研究的分拣机器人故障检测系统检测准确性较低,导致检测结果误差较大、实时性较差。为此,基于物联网设计一种新的分拣机器人故障检测系统,并分别对系统的硬件和软件进行设计。选用滑轮式机器人载体设定分拣机器人,硬件部分采用Zigbee压力传感器完成机器人故障信息采集,利用XBEE模块负责数据之间的传输,协调分拣中控机接收各个传感器采集的信息,通过STMP3550芯片将采集到的发送到上位机中,实现控制器设计。通过信息标定、信息采集、特征提取、故障识别实现软件工作流程,应用非极大值最大类间方差法来筛选出最优的高低阈值解,得到连续但含有假边缘的故障信息图像边缘。将提取到的图像特征向量映射到类型空间之中,获得识别分类结果,确定故障原因,完成故障识别。实验结果表明,基于物联网的分拣机器人故障检测系统能够有效提高检测准确性,加强检测结果的实时性。

    Abstract:

    The current research on the sorting robot fault detection system has low detection accuracy, resulting in large errors in detection results and poor real-time performance. To this end, a new sorting robot fault detection system is designed based on the Internet of Things, and the hardware and software of the system are designed separately. Select the pulley type robot carrier to set the sorting robot, the hardware part uses Zigbee pressure sensor to complete the robot fault information collection, the XBEE module is used for data transmission, and the sorting central control machine is coordinated to receive the information collected by each sensor. The collected data is sent to the upper computer to realize the controller design. The software workflow is realized through information calibration, information collection, feature extraction, and fault identification. The non-maximum maximum between-class variance method is used to screen out the optimal high and low threshold solutions, and the continuous but false edges of the fault information image edges are obtained. Map the extracted image feature vector to the type space, obtain the recognition classification result, determine the cause of the fault, and complete the fault recognition. The experimental results show that the sorting robot fault detection system based on the Internet of Things can effectively improve the detection accuracy and strengthen the real-time performance of the detection results.

    参考文献
    相似文献
    引证文献
引用本文

代康,谢凯.基于物联网的分拣机器人故障检测系统设计计算机测量与控制[J].,2021,29(8):37-41.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-03-17
  • 最后修改日期:2021-05-13
  • 录用日期:2021-05-20
  • 在线发布日期: 2021-08-19
  • 出版日期:
文章二维码