基于信号经验模态分解与分集合并的齿轮故障诊断
DOI:
CSTR:
作者:
作者单位:

海军航空大学

作者简介:

通讯作者:

中图分类号:

TN

基金项目:


Gear fault diagnosis based on Empirical Mode Decomposition andSignal diversity merging
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了准确地进行齿轮故障诊断,结合信号经验模态分解与分集合并,提出了一种新的故障诊断方法。首先,运用经验模态分解对齿轮振动信号进行分解得到若干个分量;其次,根据分量的峭度大小以及相邻分量的峭度是否接近,筛选、合成有效分量;然后,运用等增益分集合并技术对有效分量进行合并,即将其包络进行叠加;接着,使用快速傅立叶变换得到信号包络和的频率谱;最后,根据该频率谱进行故障诊断。通过对仿真信号和齿轮断齿故障振动信号的分析,验证了方法的有效性。

    Abstract:

    In order to accurately diagnose gear faults, a new fault diagnosis method is proposed by combining signal empirical mode decomposition and diversity combination. First, use empirical mode decomposition to decompose the gear vibration signal to obtain several components; secondly, filter and synthesize effective components according to the kurtosis of the components and whether the kurtosis of adjacent components are close; then, use equal gain diversity combining technology Add the signal envelopes of the effective components; then, use the fast Fourier transform to obtain the envelope and the frequency spectrum of the signal; finally, perform fault diagnosis based on the frequency spectrum. The effectiveness of the method is verified by analyzing the simulation signal and the vibration signal of the gear broken tooth fault.

    参考文献
    相似文献
    引证文献
引用本文

邓博元,崔伟成,曾庆松,李晨瑄.基于信号经验模态分解与分集合并的齿轮故障诊断计算机测量与控制[J].,2021,29(9):43-49.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-03-03
  • 最后修改日期:2021-03-25
  • 录用日期:2021-03-25
  • 在线发布日期: 2021-09-23
  • 出版日期:
文章二维码