基于机器视觉的最大内接矩形快速检测算法
DOI:
CSTR:
作者:
作者单位:

广东工业大学

作者简介:

通讯作者:

中图分类号:

基金项目:


A fast detection algorithm for maximum enclosed rectangle based on machine vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在进行皮革裁切、板材边角料再利用等过程时都会遇到求解不规则图型最大内接矩形的问题。当前工厂的裁定手段普遍由人工估测来完成,这种作业方式不仅主观性强,而且效率低下。在研究了基于数字图像处理的遍历法、中心扩散法、遍历中心扩散法后,结合以上方法提出一种高效实用的最大内接矩形快速检测算法:边界排序生长法。实验结果证实:遍历法无法正确适用于凹多边形。中心扩散法虽然可适用于任意不规则图型,但其检测效果不够理想。遍历中心扩散法的检测结果较为理想,但该方法耗时巨大。而边界排序生长法在保证高效率的同时依旧可以拟合出理想的内接矩形。

    Abstract:

    The detection of irregular polygons with maximum enclosed rectangle is of great significance to the industrial scenes such as leather cutting, the reuse of board scraps and so on. At present, the method of adjudication is generally completed by manual estimation, this method has some problems such as strong subjectivity and low efficiency. After studying the traversing method, center diffusion method and traversal center diffusion method, a efficient and practical fast detection algorithm for maximum enclosed rectangle, boundary-sorting growth method, is proposed based on the above ideas. Experimental results show that the traversal method is not suitable for concave polygons. Although the central diffusion method can be applied to any graph, its detection effect is not ideal. The traversal center diffusion method has an ideal detection result, but it takes a lot of time. The boundary sorting growth method can ensure high efficiency and still obtain the ideal maximum enclosed rectangle.

    参考文献
    相似文献
    引证文献
引用本文

邹哲康,朱铮涛,陈映谦,孟令龙,王瑞丰.基于机器视觉的最大内接矩形快速检测算法计算机测量与控制[J].,2021,29(6):194-198.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-11-21
  • 最后修改日期:2020-12-07
  • 录用日期:2020-12-08
  • 在线发布日期: 2021-07-07
  • 出版日期:
文章二维码