基于CenSurE-star和LDB的被测目标图像匹配算法
DOI:
CSTR:
作者:
作者单位:

北京化工大学

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家重点研发计划资助项目


Target image matching algorithm based on CenSurE-star and LDB
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统点特征匹配方法计算量大、匹配速度慢的问题,给出了一种基于CenSurE-star和LDB的图像匹配算法,以用于在视觉检测中对被测目标图像进行快速匹配。该算法首先通过调整滤波器尺寸从而快速检测被测目标图像中不同尺度的CenSurE-star特征点,然后采用LDB方法对特征点结合其邻域进行描述,以描述符汉明距离为标准衡量图像特征点间的相似度并进行相应筛选,最终结合RANSAC剔除剩余的误匹配点对,实现了图像间准确匹配。实验研究表明,在关于光照、噪声和模糊变化的三组被测目标图像匹配中相较SIFT、SURF等常见算法,该算法不仅显著提升匹配速度,而且保证了较高的匹配准确率。

    Abstract:

    In order to solve the problems of large amount of calculation and slow matching speed in the traditional point feature matching methods, an image matching algorithm based on CenSurE-star and LDB is proposed, which can be used to quickly match the target images in visual detection. Firstly, the size of the filter is adjusted to fast detect the CenSurE-star feature points of different scales in the target image. Then, the LDB method is used to describe the feature points combined with their neighborhood. The similarity between the image feature points is measured by the Hamming distance between descriptors, and the corresponding filtering is carried out. Finally, RANSAC is used to eliminate the remaining mismatches and achieve the accurate matching between the images. Experimental research shows that compared with common algorithms such as SIFT and SURF in the matching of the three sets of target images with regard to illumination, noise and blur changes, this algorithm not only improves the matching speed, but also ensures high matching accuracy.

    参考文献
    相似文献
    引证文献
引用本文

胡正,于涛,王汝童.基于CenSurE-star和LDB的被测目标图像匹配算法计算机测量与控制[J].,2021,29(4):154-158.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-08-12
  • 最后修改日期:2020-10-14
  • 录用日期:2020-10-14
  • 在线发布日期: 2021-04-25
  • 出版日期:
文章二维码