机器学习在故障检测与诊断领域应用综述
DOI:
CSTR:
作者:
作者单位:

国防科技大学 空天科学学院,湖南 长沙 41005

作者简介:

通讯作者:

中图分类号:

TP206.1

基金项目:


Overview of Application on Fault Detection and Diagnosis Based forMachine Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    机器学习已经成为当前技术发展热点,由于机器学习具有快速处理大量数据、分析提取有效信息等优点,因此在故障检测与诊断技术中受到了越来越多的关注。本文系统介绍了机器学习和故障检测与诊断的概念、分类,深入了解了基于PCA和随机森林的故障检测方法和国内研究现状,以及基于决策树、支持向量机以及神经网络的故障诊断方法和国内外研究现状,其中重点介绍了卷积神经网络和递归神经网络的应用,并对机器学习算法在故障检测与诊断应用前景进行了展望。

    Abstract:

    Machine Learning has been a popular and well-investigated topic technology, especially because machine learning has the advantages of fast processing large amounts of data, analyzing and extracting effective information and so on, it has more and more attention to fault detection and diagnosis. This paper systematically analyzes the concepts and classifications of machine learning and fault detection and diagnosis, and deeply comprehends the method of fault detection and diagnosis based on machine learning. Then it focuses on the fault detection methods including PCA and random forests and the research status at home and abroad; it also introduces fault diagnosis methods including decision trees, support vector machines and neural networks and the research status at home and abroad, especially convolutional neural networks and recurrent neural networks, discusses machine learning of future applications in fault detection and diagnosis.

    参考文献
    相似文献
    引证文献
引用本文

翟嘉琪,杨希祥,程玉强,李亮.机器学习在故障检测与诊断领域应用综述计算机测量与控制[J].,2021,29(3):1-9.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-07-14
  • 最后修改日期:2020-08-14
  • 录用日期:2020-08-14
  • 在线发布日期: 2021-03-24
  • 出版日期:
文章二维码