基于模糊神经网络的涡喷发动机控制系统设计
DOI:
CSTR:
作者:
作者单位:

南京理工大学 机械工程学院

作者简介:

通讯作者:

中图分类号:

TP273

基金项目:


Design of Turbojet Engine Control System Based on Fuzzy Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对微型涡喷发动机ECU控制系统具有时变性和非线性的特点,为改善微型涡喷发动机控制系统的控制性能,将模糊神经网络PID控制方法应用于ECU的转速与推力控制系统中。首先,利用某微型涡喷发动机的试车数据通过系统辨识方法得到其数学模型,其次针对模糊PID无法在线调参的弊端,引入模糊神经网络控制方法对微型涡喷发动机ECU系统进行控制。为模拟发动机在工作过程中遇到的干扰问题,在仿真过程中加入了干扰信号,通过与传统PID、模糊PID的仿真结果对比验证得出,模糊神经网络PID在涡喷发动机控制系统中的表现最好,使系统的稳定速度更快,超调量更小,在有干扰的情况下恢复稳定状态的时间更短。

    Abstract:

    In view of the characteristics of time-varying and non-linear characteristics of the ECU control system of the micro-turbojet engine, in order to improve the control performance of the micro-turbojet engine control system, the fuzzy neural network PID control method is applied to the speed and thrust control system of the ECU. First, using the test data of a micro-turbojet engine to obtain its mathematical model through the system identification method, and secondly, the fuzzy neural network control method is introduced to control the micro-turbojet engine ECU system for the drawback of fuzzy PID online parameter adjustment. In order to simulate the interference problems encountered by the engine in the process of operation, interference signals were added to the simulation process. Through comparison and verification with the simulation results of traditional PID and fuzzy PID, it is found that the fuzzy neural network PID control system is better.It has a faster and faster stability,the amount of modulation is smaller, and the time to restore a stable state in the presence of interference is shorter.

    参考文献
    相似文献
    引证文献
引用本文

李慧琳,封锋.基于模糊神经网络的涡喷发动机控制系统设计计算机测量与控制[J].,2021,29(2):53-57.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-07-02
  • 最后修改日期:2020-07-31
  • 录用日期:2020-07-31
  • 在线发布日期: 2021-02-08
  • 出版日期:
文章二维码