基于语义分割和空间上下文信息的防震锤识别
DOI:
CSTR:
作者:
作者单位:

上海大学

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金(61471230)。


Shock hammer recognition based on semantic segmentation and spatial context information
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前输电线路中防震锤部件识别精确率低,缺陷无法诊断,未充分利用其空间上下文信息的问题,提出结合DeepLabV3+语义分割网络与防震锤的空间上下文关系对其进行识别与缺陷诊断。利用图像分块和数据集预处理提高DeepLabV3+网络分割精度,将防震锤与其周围部件分割出来后,建立其空间上下文关系缩小防震锤的识别范围,提高其识别精确率。实验结果表明,图像分块与预处理能够将DeepLabV3+网络的分割精度提升到93.4%以上,DeepLabV3+网络可以有效的识别正常防震锤与缺陷防震锤,识别召回率可以达到87%以上,建立防震锤与周围部件的空间上下文关系能够提高其识别精确率到90%以上。

    Abstract:

    In view of the present shock hammer parts recognition precision rate is low, did not make full use of the relationship of the components of space around problems, put forward to combine the semantic segmentation of segmentation accuracy of the optimal network DeepLabV3+ space context relationship with shock hammer. DeepLabV3+ network segmentation accuracy is improved by image segmentation and data set preprocessing, after the shock hammer and its surrounding parts are separated, the spatial context relationship is established to narrow the identification range of the shock hammer and improve its recognition accuracy. Experimental results show that image segmentation and preprocessing can improve the segmentation accuracy of DeepLabV3+ network to more than 93.4%, DeepLabV3 + network can effectively identify the normal and defective hammer, identify the recall rate can achieve 87% above, establish shock hammer with the surrounding parts of spatial context can improve the identification precision rate to more than 90%.

    参考文献
    相似文献
    引证文献
引用本文

贾立业,韩军,余鸿飞.基于语义分割和空间上下文信息的防震锤识别计算机测量与控制[J].,2021,29(1):200-205.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-06-12
  • 最后修改日期:2020-07-06
  • 录用日期:2020-07-06
  • 在线发布日期: 2021-01-22
  • 出版日期:
文章二维码