摘要:通过以目标信息为指导的卷积体系总结相关源信息,提出了一种系统的处理语言方法。利用在解码过程中使用不同的引导信号,经过特殊设计的卷积+门控体系结构可以查明与预测目标单词相关的源句子部分,并将其与整个源句子的上下文融合在一起形成统一表示形式。研究结果表明,模型将表示形式与目标语言单词一起馈入深度神经网络(DNN),形成更强大的神经网络联合模型(NNJM)。通过两个NIST汉英翻译任务的实验验证,在相同设置下,tagCNN和inCNN在Dep2Str基线上的改善幅度分别为+1.28,+1.75 BLEU,所提出的模型分别优于NIST MT04和MT05的平均值+0.36,+0.83 BLEU,比传统DNN机器翻译平均提高了+1.08 BLEU点。模型为统计机器翻译研究提供了新思路。