基于同步压缩-交叉小波变换算法的齿轮故障诊断研究
DOI:
CSTR:
作者:
作者单位:

湖南铁道职业技术学院

作者简介:

通讯作者:

中图分类号:

TP334.3

基金项目:

湖南省教育厅科学研究青年项目(19B379)


Research on gear fault diagnosis based on synchronous compression CrossWavelet Transform
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    齿轮超负荷使用或者在不良环境下使用时,容易造成齿轮失效。齿轮的失效形式主要有断齿故障、齿面点蚀、齿轮磨损等,此外齿轮制造过程中也存在固有误差,传统的齿轮故障诊断通常使用振动加速度传感器或者SCADA数据进行处理,但振动加速度传感器与SCADA通常价格昂贵,且会有大量的数据冗余,不便于后期信号处理。本设计拟采用一种同步压缩-交叉小波变换算法,在齿轮故障机理分析的基础上,设计了故障诊断实验装置,对正常齿轮、断齿和磨损情况下的故障特性进行提取,从而对故障进行准确诊断,经验证,该方法诊断准确度高。

    Abstract:

    In the process of using gear, over load operation or long-term exposure to bad environment will have an adverse impact on the normal operation of the gear, resulting in gear failure and unable to operate. The failure forms of gears mainly include broken teeth fault, tooth surface pitting, gear wear, etc. in addition, there are inherent errors in the gear manufacturing process. The traditional gear fault diagnosis usually uses vibration acceleration sensor or SCADA data for processing, but the vibration acceleration sensor and SCADA are usually expensive, and there will be a lot of data redundancy, which is not convenient for later signal processing. In this design, a synchronous compression Cross Wavelet Transform algorithm is proposed. Based on the analysis of gear fault mechanism, a fault diagnosis experimental device is designed to extract the fault characteristics of normal gear, broken gear and wear, so as to accurately diagnose the fault. After verification, this method has a high diagnosis accuracy.

    参考文献
    相似文献
    引证文献
引用本文

黄俊,魏丽君.基于同步压缩-交叉小波变换算法的齿轮故障诊断研究计算机测量与控制[J].,2020,28(11):41-44.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-03-31
  • 最后修改日期:2020-04-21
  • 录用日期:2020-04-21
  • 在线发布日期: 2020-11-23
  • 出版日期:
文章二维码