基于线性回归预测的城市轨道交通车地无线通信性能提升方法研究
DOI:
作者:
作者单位:

中国铁道科学研究院集团有限公司通信信号研究所

作者简介:

通讯作者:

中图分类号:

U231???

基金项目:

国家重点研发计划


Research on improving wireless communication performance of urban rail transit based on linear regression prediction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    车地无线通信是城市轨道交通信号系统正常运行的基础,切换性能是无线通信质量的重要指标,也是影响车地列车控制信息传输的重要因素。在广州地铁运维过程中,通过分析日志发现切换性能是限制车地无线通信性能的重要因素。为此提出了一种基于线性回归预测的WLAN切换算法,针对WLAN制式的无线通信方式,以当前连接AP的接收信号强度、待连接AP的接收信号强度和列车位置作为参数,计算预测函数并根据预测的两种接收信号强度值进行切换触发判决,提高WLAN切换的性能,从而提高车地无线通信性能。基于广州地铁某线路的测试数据的仿真实验结果表明该方法效果良好。

    Abstract:

    Vehicle-ground wireless communication is the basis of urban rail transit signal systems. Handover performance is not only an important indicator of wireless communication quality, but also an important factor affecting the transmission of train control information. During the operation and maintenance of the Guangzhou Metro, it was found through analysis of the log that handover performance is an important factor limiting the wireless communication performance of trains and grounds Therefore, a WLAN handover algorithm based on linear regression prediction is proposed. For wireless communication methods of WLAN standard, using the received signal strength of the currently connected Access Point, the received signal strength of the Access Point to be connected, and the train position as parameters, calculate the prediction function. The handover trigger decision is made based on the two kinds of predicted received signal strength value, which improves WLAN handover performance, thereby improving car-ground wireless communication performance. The experimental and simulation based on the test data of a Guangzhou Metro line results show that the method works well.

    参考文献
    相似文献
    引证文献
引用本文

白轩,张小虎,钟敏富.基于线性回归预测的城市轨道交通车地无线通信性能提升方法研究计算机测量与控制[J].,2020,28(10):145-150.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-02-11
  • 最后修改日期:2020-04-02
  • 录用日期:2020-04-03
  • 在线发布日期: 2020-10-21
  • 出版日期:
文章二维码