肺结节智能检测和三维可视化系统设计与实现
DOI:
CSTR:
作者:
作者单位:

中国科学院大学

作者简介:

通讯作者:

中图分类号:

R445.3;TP391.41

基金项目:

国家重点研发计划项目(2017YFC0112900)


Design and realization of intelligent detection and three-dimensional visualization system for pulmonary nodules
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高肺部疾病识别效率,减少肺结节漏诊率,设计了一套肺结节智能检测和三维可视化系统。方法:构建了一个基于RESNET的深度多通道三维卷积神经网络,根据LUNA16公开数据集的888例患者图像,选择权重参数为α=0.5,γ=2的Focal loss损失函数进行训练,在CT图像上对可疑的肺结节进行检测,采用光线投射算法对检测出的结节区域进行体绘制三维重建。结果:经实验测试,该网络与单通道网络和特征金字塔网络(Feature Pyramid network, FPN)相比,准确度最高,为84.8%,系统能够在230s内自动检测肺结节并完成三维重建,对于分辨率1mm/pixel的CT图像灵敏度在98%以上,用户可在浏览器上查看结节检测结果和三维重建模型。结论:该系统突破了终端设备和地域限制,能够为肺部疾病提供辅助诊断,提高诊断效率。

    Abstract:

    In order to improve the recognition efficiency of lung diseases and reduce the rate of missed diagnosis of lung nodules, a set of intelligent detection and three-dimensional visualization system of lung nodules was designed. Methods: A deep multi-channel three-dimensional convolutional neural network based on RESNET was constructed. Based on the 888 patient images of the LUNA16 public data set, a Focal loss loss function with α = 0.5 and γ = 2 was selected for training. The suspicious lung nodules are detected, and the ray projection algorithm is used to perform volume rendering three-dimensional reconstruction of the detected nodules. Results: After experimental tests, the network has the highest accuracy compared with the single-channel network and Feature Pyramid network (FPN), which is 84.8%. The system can automatically detect lung nodules and complete 3D reconstruction within 230s. The sensitivity of CT images with a resolution of 1mm / pixel is above 98%. Users can view the nodule detection results and 3D reconstruction models on the browser. Conclusion: The system breaks through the limitation of terminal equipment and area, and can provide auxiliary diagnosis for lung diseases and improve the diagnosis efficiency.

    参考文献
    相似文献
    引证文献
引用本文

马思然,杨媛媛,倪扬帆,顾轶平.肺结节智能检测和三维可视化系统设计与实现计算机测量与控制[J].,2020,28(9):177-181.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-01-08
  • 最后修改日期:2020-08-21
  • 录用日期:2020-03-19
  • 在线发布日期: 2020-09-16
  • 出版日期:
文章二维码