基于结构检测模型的白内障连续环形撕囊边界检测方法
DOI:
CSTR:
作者:
作者单位:

河北工业大学 人工智能与数据科学学院

作者简介:

通讯作者:

中图分类号:

TP391.7

基金项目:

国家重点研发计划项目 (资助号:2017YFB1302704),国家自然科学基金项目 (资助号: U1713220),北京市科委项目(资助号:Z191100002019013),中科院青年创新促进会项目(资助号: 2018165)。


Boundary Extraction for Capsulorhexis of Cataract Surgery Using Structure Detection Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对临床白内障手术面临的连续环形撕囊术中边界自动提取的问题,提出了一种具有高计算效率和良好鲁棒性的新颖检测方案来提取撕囊边界信息。首先,应用包括一般直方图均衡化和自适应直方图均衡化在内的预处理程序来增强输入图像的对比度。然后,建立了一种结构检测模型来检测低对比度条件下细小的撕囊边界信息。在这之后,应用局部阈值和后处理来消除干扰像素。最后,经过数据集对提出的方法进行验证。实验结果表明,所提方法具有优异检测性能并取得了F测度为0.915的结果。证明了该方法可以检测出白内障手术连续环形撕囊边界,并具有较高的计算能力和精确度。

    Abstract:

    Main goal of this paper is to address various challenges towards clinical ophthalmology in the context of automatic boundary extraction in continuous curvilinear capsulorhexis of cataract surgery via structure detection model. A novel extraction scheme with high computational efficiency and robustness is proposed to extract the boundary information. Firstly, pre-processing procedure is applied that includes general histogram equalization and contrast limited adaptive histogram equalization was utilized to enhance the contrast of the surgery images. Then, a proposed structure detection model is established to detect the tiny boundary with low contrast. After that, local threshold and post process are applied to remove disturbance. Finally, the proposed method has been verified through the data sets. Experimental results show that the proposed method could extract the boundary of capsulorhexis and gets the result of F-measure=0.915,which outperform other schemes,and achieve high computational ability and accuracy.

    参考文献
    相似文献
    引证文献
引用本文

刘卫朋,韩达,李桢,边桂彬.基于结构检测模型的白内障连续环形撕囊边界检测方法计算机测量与控制[J].,2020,28(9):46-52.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-01-04
  • 最后修改日期:2020-02-15
  • 录用日期:2020-02-18
  • 在线发布日期: 2020-09-16
  • 出版日期:
文章二维码