发动机叶片机器人精密砂带磨削精度检测技术
DOI:
CSTR:
作者:
作者单位:

西安交通大学 城市学院

作者简介:

通讯作者:

中图分类号:

基金项目:

陕西省教育厅专项科学研究项目《面向复杂曲面的工业机器人抛光接触状态分析及抛光路径规划研究》(19JK0496)。


Precision inspection technology for precision grinding of engine blade robot
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    当前精密砂带磨削精度检测技术检测准确率低,检测效率差。为了解决上述问题,引用发动机机器人研究了一种新的精密砂带磨削精度检测技术,对其精度数据进行采集,将采集出的系统数据作为基础信息来源,获取叶片零部件的点云信息,处理机器人的工作主坐标系,通过三维激光扫描获取叶片机器人的准确信息,同时配以打磨剖光操作,以PCA算法解析,进一步将数据集简化,根据数据主要分布规律选择合适的算法加工位置与范围,在三维空间中,将点分别对应坐标轴中的点进行匹配,通过对磨削接触面的轮廓以及磨削表面完整性进行分析,以实现对发动机叶片机器人精密砂带磨削精度的检测。实验结果表明,相较于传统检测技术,发动机叶片机器人精密砂带磨削精度检测技术检测精度提高了31.28%,检测误差降低了15.21%。

    Abstract:

    The current precision belt grinding precision detection technology has low detection accuracy and poor detection efficiency. In order to solve the above problems, a new precision grinding belt grinding precision detection technology was studied with reference to the engine robot. The accuracy data was collected, and the collected system data was used as the basic information source to obtain the point cloud information of the blade parts. The main coordinate system of the working robot is processed, and the accurate information of the blade robot is obtained by 3D laser scanning. At the same time, the polishing operation is performed, and the PCA algorithm is used to analyze, further simplify the data set, and select the appropriate algorithm processing position according to the main distribution law of the data. Scope, in the three-dimensional space, the points are matched to the points in the coordinate axes respectively, and the contour of the grinding contact surface and the surface integrity of the grinding are analyzed to realize the precision of the grinding precision of the engine blade robot . The experimental results show that compared with the traditional detection technology, the detection precision of the precision grinding belt grinding precision detection technology of engine blade robot is improved by 31.28%, and the detection error is reduced by 15.21%.

    参考文献
    相似文献
    引证文献
引用本文

李娜娜,万中.发动机叶片机器人精密砂带磨削精度检测技术计算机测量与控制[J].,2020,28(7):39-44.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-11-22
  • 最后修改日期:2019-12-09
  • 录用日期:2019-12-09
  • 在线发布日期: 2020-07-14
  • 出版日期:
文章二维码