基于ATML的D矩阵诊断模型实现
DOI:
CSTR:
作者:
作者单位:

成都天奥测控技术有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:


Implementationof Dmatrix Inference Model Based on ATML
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    故障诊断是自动测试系统/设备的重要功能,能否快速、准确的隔离故障是影响装备维修效率的重要因素。当今先进自动测试系统采用ATML系列标准,实现信息交换,其核心在于利用XML语言,通过规定的语法和结构描述测试系统、被测设备、测试流程和测试诊断结果等信息。针对故障诊断,标准定义了贝叶斯网络、D矩阵推理、诊断逻辑和故障树等故障诊断模型。其中D矩阵推理模型建立较容易,易于工程实现,被广泛应用。文章采用图形化建模方法建立了测试-故障依赖模型,描述了D矩阵模型建立方法、建立过程、推理规则和推理算法,并以某电台为例介绍了XML语言相关描述方法。最后基于D矩阵对电台测试性进行分析,根据评估结果完善D矩阵内容,优化推理算法,有效提高了电台故障隔离率,降低诊断模糊度。

    Abstract:

    Fault diagnosis is an important function of Automatic Test System/Equipment(ATS/ATE), whether the fault can be isolated quickly and accurately is an important factor affecting the maintenance efficiency of equipment. Nowadays, advanced automatic test system adopts ATML series standard usually for information interchange, the description of information such as test system,unit under test,test process,test results and diagnostic results using XML with the syntax and data structure is the key of the standard. The standard defines the fault diagnosis models such as Bayesian network, D-matrix reasoning,diagnosis logic and fault tree. Among them,D-matrix reasoning model can be easily established, it is widely usedin engineering because it is easy to realize. This paper build the Dependency model using graphic modeling method,and describes the method of establishing, the process of establishing,reasoningrules and reasoning algorithm of D-matrix model,and takes a radio station as an example to introduce the related description method of XML language.Finally,this paper analyses the testability of the radio base on the D-matrix, perfects the matrix and algorithm on the basis of the testability analysis result,it improved the radio fault isolation rate,and reduced the ambiguity group.

    参考文献
    相似文献
    引证文献
引用本文

胡 宇,文永康.基于ATML的D矩阵诊断模型实现计算机测量与控制[J].,2020,28(6):12-18.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-10-22
  • 最后修改日期:2019-11-18
  • 录用日期:2019-11-19
  • 在线发布日期: 2020-06-17
  • 出版日期:
文章二维码