摘要:图像特征点匹配算法是实现目标识别的一种有效算法,目前图像特征点匹配算法耗时大,而且在匹配过程中存在伪匹配点。提出了一种改进算法:在初始特征点检测阶段,根据图像大小动态构造高斯金字塔图层,提高了算法的实时性和准确性;采用设置阈值的方法对初始特征点进行优化,减少匹配时间。在特征点匹配阶段,利用提取特征点中正确匹配点与伪匹配点坐标值差异较大这种特性,对伪匹配点进行去除,最后进行目标识别。实验结果表明,在尺寸大小为800×600的图像中,SURF算法提取特征点数225个,耗时92.499 ms, Octave 3;特征点匹配率97.50% ,耗时349.716 ms。提出的改进方法更为简单有效,减少了特征点匹配的误差,能够有效缩短图像配准时间。