改进鲸鱼算法构建混合模型的建筑能耗预测
DOI:
CSTR:
作者:
作者单位:

西安建筑科技大学 信息与控制工程学院

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:

国家自然科学基金


Building Energy Consumption Prediction Based on Hybrid Model Constructed by Improved Whale Algorithms
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    建筑能耗数据具有非平稳和非线性特征,单一预测模型很难对其进行精准预测,提出一种用于建筑能耗短期预测的新型混合模型。利用互补集合经验模态分解方法(CEEMD)将波动性较大的能耗数据分解为一组本征模态函数和一个残差序列;基于反向学习、差分进化算法并引入控制参数对鲸鱼优化算法(WOA)进行改进,有效解决算法早熟收敛与陷入局部最优等问题,提出改进算法UWOA(upgraded whale optimization algorithm);利用UWOA优化Elman神经网络的权值与阈值,优化后的Elman神经网络对本征模态函数和残差序列进行预测并集成,得到能耗预测值。应用CEEMD-UWOA-Elman混合模型对上海某大型公共建筑能耗进行短期预测,结果显示混合模型获得很好的预测效果。

    Abstract:

    Building energy consumption data has non-stationary and nonlinear characteristics. A single prediction model is difficult to predict accurately, and a new hybrid model for short-term prediction of building energy consumption is proposed. Complementary ensemble empirical mode decomposition (CEEMD) is utilized to decompose volatility energy data into a set of intrinsic mode functions and a residual sequence. Based on reverse learning, differential evolution algorithm and control parameters, the Whale Optimization Algorithm (WOA) is upgraded to effectively solve the problem of premature convergence and local optimality, and the upgraded whale optimization algorithm (UWOA) is proposed. UWOA is utilized to optimize the weights and thresholds of the Elman neural network. The optimized Elman neural network predicts and integrates the intrinsic mode functions and the residual sequence, and then the energy prediction is obtained. The CEEMD-UWOA-Elman hybrid model is used to predict the energy consumption of a large public building in Shanghai. The results show that the hybrid model has a good prediction effect.

    参考文献
    相似文献
    引证文献
引用本文

王 茹,宋 爽,贺 佳.改进鲸鱼算法构建混合模型的建筑能耗预测计算机测量与控制[J].,2020,28(2):197-201.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-08-05
  • 最后修改日期:2019-08-19
  • 录用日期:2019-08-19
  • 在线发布日期: 2020-02-24
  • 出版日期:
文章二维码