摘要:近年来,卷积神经网络(CNN)等深度学习方法的发展为发动机故障诊断和预测带来了新的思路。CNN具有局部连接、权值共享、池化操作以及多层结构等特点,能够有效提取局部特征,降低网络的训练难度,使CNN具有很强的学习能力和特征表达能力。开展了深度卷积神经网络故障预测方法研究,实现了面向发动机气路故障预测算法架构。利用基于发动机试验仿真数据对该方法进行了验证,并与其他几种常见的基于数据驱动的预测方法进行了比较,验证结果表明本文提出的基于卷积神经网络的预测方法具有较好的可行性和效果,可作为开展发动机PHM技术研究的参考。