应用激光雷达与相机信息融合的障碍物识别
DOI:
CSTR:
作者:
作者单位:

上海宇航系统工程研究所

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

民用航天十三五规划项目(D030101)


Obstacle recognition based on lidar and camera information fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对探测器在地外星体表面软着陆过程中的障碍物识别问题,提出了一种融合三维点云数据与灰度图像数据进行精确障碍物识别的方法。首先利用坐标转换将灰度图像与三维点云归一化到同一坐标系下,实现传感器数据的融合。然后采用改进K均值聚类算法对预处理后灰度图像进行图像分割,生成光学障碍图。最后利用开源库PCL(Point Cloud Library)对激光雷达生成的三维激光点云数据进行处理,采用随机采样一致性算法提取着陆区地形水平面,对去除水平面后的点云数据进行点云分割,分离出突起物、凹坑等障碍物,并通过激光雷达与相机转换坐标系,投影到像平面,生成最终障碍图。

    Abstract:

    Aiming at the obstacle recognition problem of the detector in the soft landing process of the extraterrestrial surface, a method of fusing 3D point cloud and grayscale image for accurate obstacle recognition is proposed. Firstly, the grayscale image and the 3D point cloud are normalized to the same coordinate system by coordinate transformation. Then the K-means clustering algorithm is used to the pre-processed grayscale image to generate the optical obstacle map. Finally, the 3D point cloud which generated by the lidar is processed by the open source library PCL (Point Cloud Library).The RASAC (Random Sample Consensus, RASAC) algorithm is adopted to extracts the plane of the landing zone. After removing the plane from the point cloud, a segmentation algorithm is used to separate obstacles such as protrusions and pits. By the convert matrix from lidar coordinate to camera coordinate, the obstacles are projected to the grayscale image which the final obstacle map is generated.

    参考文献
    相似文献
    引证文献
引用本文

黄兴,应群伟.应用激光雷达与相机信息融合的障碍物识别计算机测量与控制[J].,2020,28(1):184-188.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-05-29
  • 最后修改日期:2019-07-16
  • 录用日期:2019-07-19
  • 在线发布日期: 2020-02-22
  • 出版日期:
文章二维码