海军航空大学
山东自然科学基金面上项目(ZR2017MF036);国防科技项目基金(F062102009)
为了更好的表征滚动轴承性能退化趋势,提出基于时域特征和支持向量机的滚动轴承退化趋势预测方法。首先提取振动信号的时域特征组成高维特征集,利用主成分分析方法(PCA)对时域高维特征集进行维数约简,以消除各特征指标之间的冗余及信息冲突等问题。然后将维数约简后的特征向量作为输入数据,输入至由粒子群(Particle Swarm Optimization,PSO)优化的支持向量机中,建立退化趋势预测模型,从而完成退化趋势预测。运用滚动轴承全寿命试验数据进行验证分析,结果表明该方法能够获取准确的预测结果。
戴邵武,陈强强,丁宇.基于时域特征的滚动轴承寿命预测计算机测量与控制[J].,2019,27(10):60-63.