基于LS-SVM和核密度估计的概率性风电功率预测
DOI:
作者:
作者单位:

哈尔滨工业大学自动化测试与控制研究所 哈尔滨 150080

作者简介:

通讯作者:

中图分类号:

TM614

基金项目:


Probabilistic Wind Power Prediction Based on LS-SVM and Kernel Density Estimation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来风电在我国发展迅猛,但风速的不稳定性和间歇性,使风电功率也具有同样的性质,这样的电功率注入会带来电力系统运行的不稳定,因此,风电功率的预测对风电并网及使用具有重要意义。鉴于此,开展风电功率的短期预测研究,利用LS-SVM对风电功率进行建模并实现确定性的短期预测,在此基础上使用非参数统计法对确定性预测模型的预测误差进行拟合获得其密度函数,计算各功率段的置信区间以得到概率性预测结果,从而提高风电功率预测结果的实用性和可靠性。与常用的自回归滑动平均模型和BP神经网络模型进行对比实验,证明本方法的性能及优势。

    Abstract:

    In recent years, wind power has developed rapidly in China, but the instability and intermittence of wind speed make the wind power have the same nature. Such power injection will bring instability to the operation of the power system. Therefore, prediction of wind power is of great significance to wind power network and utilization. In view of this, short-term prediction of wind power is focused based on LS-SVM, and thus the deterministic short-term prediction is achieved. In addition, the non-parametric statistical method is used to fit the prediction error of the deterministic prediction model to estimate its density function, and calculate the confidence interval of each power segment to obtain probabilistic prediction results. As a result, the practicability and reliability of wind power prediction results are improved. Compared with the commonly used autoregressive moving average model and BP neural network model, the performance and advantages of the method are proved.

    参考文献
    相似文献
    引证文献
引用本文

孟升卫,冯晓晓,庞景月,崔秀海.基于LS-SVM和核密度估计的概率性风电功率预测计算机测量与控制[J].,2019,27(12):34-38.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-04-10
  • 最后修改日期:2019-05-08
  • 录用日期:2019-05-08
  • 在线发布日期: 2019-12-26
  • 出版日期:
文章二维码