基于粗大误差检测和补偿的改进型EKF动态目标跟踪算法
DOI:
CSTR:
作者:
作者单位:

温州大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学(61703309);浙江省自然科学(LY18F030014);浙江省科技计划项目(LGG18F040002)


Gross Error Detection and Compensation Based Modified EKF Algorithm for Dynamic Target Tracking
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    卡尔曼滤波作为当前动态目标跟踪中的常用滤波算法,研究其动态跟踪的准确性对于军事制导,交通导航等领域具有重大意义。针对动态系统目标跟踪观测过程中存在的坏值、静差和漂移三种粗大误差,基于传统扩展卡尔曼滤波(Extended Kalman Filter,EKF)算法框架,引入了一种粗大误差检测和补偿方法,实现了对动态系统观测值中粗大误差的准确辨识和优化补偿,使得扩展卡尔曼滤波能够结合粗大误差检测和补偿方法有效地排除观测值中的粗大误差,滤波后的状态估计值更加准确地逼近真实值。经过仿真实验和对比,提出的改进型EKF算法能有效地排除粗大误差观测值对状态预测过程的影响,并且实现了对动态系统目标的准确跟踪,这大大提高了动态目标跟踪的精确度。

    Abstract:

    Kalman filtering is a commonly used filtering algorithm in current dynamic target tracking. It is of great significance to study its dynamic tracking accuracy for military guidance, traffic navigation and other fields. Three kinds of gross errors including outliers, biases and drifts, are considered in the observations of dynamic target tracking system. Based on the traditional Extended Kalman Filter (EKF) framework, a methodology of gross error detection and compensation realizes the accurate identification and compensation of the gross errors in the observations. So that the modified EKF can effectively eliminate the gross errors in the observations by combining the system equations and the results of state estimation is closer to the true values. After simulations and comparisons, the modified EKF algorithm achieves accurate tracking of dynamic targets by effectively eliminating the influence under the condition of different types of gross errors in the observations. It can greatly improve the accuracy of dynamic target tracking.

    参考文献
    相似文献
    引证文献
引用本文

张迪,张正江,胡桂廷,朱志亮.基于粗大误差检测和补偿的改进型EKF动态目标跟踪算法计算机测量与控制[J].,2019,27(10):254-258.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-03-27
  • 最后修改日期:2019-04-28
  • 录用日期:2019-04-29
  • 在线发布日期: 2019-10-16
  • 出版日期:
文章二维码