摘要:针对图像目标检测的嵌入式实时应用需求,采用合并计算层的方法对基于MobileNet和单发多框检测器(SSD)的深度学习目标检测算法进行了优化,并采用软硬件结合的设计方法,基于ZYNQ可扩展处理平台设计了实时图像目标检测系统。在系统中,根据优化后的算法设计了一款多处理器核的深度学习算法加速器,并采用PYTHON语言设计了系统的软件。经过多个实验测试,深度学习目标检测系统处理速度可以达到45FPS,是深度学习软件框架在CPU上运行速度的4.9倍,在GPU上的1.7倍,完全满足实时图像目标检测的需求。