飞行试验工程大数据治理思考
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Considering of Flight Test Engineering Big Data Governance
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    飞行试验工程大数据是典型的工业大数据,是试飞工程规划、设计、执行、评估以及开展航空科学研究的最重要的基础。文章分析了试飞工程大数据的质量特性及其影响因素,学习借鉴国际标准化《数据治理白皮书》提出的数据治理思想体系与模型,针对试飞工程大数据管理与应用特点,结合多年来在试飞工程中的大数据管理应用的实践经验,提出了以飞行试验大数据标准化体系为基础,以涵盖试飞工程全过程和全业务流程的试飞数据质量监控系统和一体化的试飞大数据管理与应用系统为并行相互支持的大数据治理技术平台,将试飞业务流程、业务策略、业务标准、业务逻辑以及组织管理有机有效地融入到数据管理与治理体系中,形成能够不断自我完善、自我更新、自我规范、开放共享的试飞工程大数据治理体系,对飞行试验工程以及航空科学研究步入“大数据科研范式”奠定数据基础。

    Abstract:

    Flight test engineering big data are one of the typical industry big data, and are the most important data resources for the flight test engineering programming, designing, implement, assessment and aerial science research. It analyses the quality properties and their influencing factors, on the basis of using for reference of the data governance models and methodology system of the ISO 《White Book on Data governance》, pointing to the flight test engineering data management and application characters, relying on years experience about flight test data management and application in the flight test, puts forward one of the most effective data governance systems about flight test engineering big data: on the basis of the flight test big data standards, setting up a flight test big data governance platform which combines with the flight test data quality monitoring system and flight test data management and application integrating system, dissolving effectively and organically with flight test operation processes, operation strategy principles, operation logicalness, organization management and so on in the systems during the whole flight test program process period. The flight test engineering big data governance systems are more appropriate to flight test engineering and aerial scientific development, as the systems being improved on, updated continually, standardized roundly and shared widely without intermission, and are the most important basis of the aerial research paradigm of Big Data – Data-intensive scientific discovery.

    参考文献
    相似文献
    引证文献
引用本文

党怀义.飞行试验工程大数据治理思考计算机测量与控制[J].,2019,27(7):266-269.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-01-05
  • 最后修改日期:2019-01-05
  • 录用日期:2019-01-28
  • 在线发布日期: 2019-07-30
  • 出版日期:
文章二维码