基于太阳能充电站中风光火多目标优化管理问题的研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(51307140)


Research on Multi-objective Optimization Management Problem of Wind Power, Photovoltaic and Thermal Based on Solar Charging Station
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    新能源汽车行业的蓬勃发展,带来了新能源汽车充电站的建设和运营相关问题。无人值守是今后所有行业的一个主流趋势,充电站当然也不例外。无人值守的充电站被要求不仅能对站内突发情况自主解决,而且充电站能够充分、合理利用当地电力资源,实现电力资源的合理优化调度。因此文中的重点便是研究如何均衡使用当地已有的电力资源,使得充电站运营成本和电池损耗最小。文中在分析了太阳能充电站的系统功能和运营方式基础之上,建立了该系统接入风力、火力等电力资源的优化调度模型,通过非支配遗传算法NSGA-II对多目标函数优化模型进行求解,验证模型的有效性和可靠性,为未来涉及多种电力资源的运营管理问题提供了一条参考途径。

    Abstract:

    The booming development of the new energy EV industry has brought about problems related to the construction and operation of new energy vehicle charging stations. Unattended is a mainstream trend in all future industries, and charging stations are no exception. The unattended charging station is required to not only solve the sudden situation in the station, but also can fully and reasonably utilize the local power resources to realize the rational optimization and scheduling of the power resources. Therefore, the purpose of this paper is to study how to balance the use of local existing power resources, so that the charging station operating costs and battery losses can be minimized. Based on the analysis of the system function and operation mode of solar charging station and considering the validity and reliability of the model, the optimal scheduling model is established to access wind power, firepower and other power resources. The multi-objective function optimization model is calculated by non-dominated genetic algorithm NSGA-II, which provides a reference path for future operational management issues involving multiple power resources.

    参考文献
    相似文献
    引证文献
引用本文

邢毓华,刘兴,程绍谦.基于太阳能充电站中风光火多目标优化管理问题的研究计算机测量与控制[J].,2019,27(7):174-179.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-12-24
  • 最后修改日期:2019-01-15
  • 录用日期:2019-01-15
  • 在线发布日期: 2019-07-30
  • 出版日期:
文章二维码