基于GA-ANFIS的装甲车辆蓄电池SOH预测方法
DOI:
CSTR:
作者:
作者单位:

陆军装甲兵学院

作者简介:

通讯作者:

中图分类号:

TP216

基金项目:

国家自然科学(***),浙江省重大科技专项(***)。


SOH Prediction Method of Armored Vehicle Batteries Based on GA-ANFISZhu Yongli,Chang Tianqing,Liu Peng
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为保持装甲车辆的机动安全和运行可靠,提高其铅酸蓄电池健康状态的预测能力至关重要。本文将遗传算法与自适应模糊神经系统相结合,提出了一种基于GA-ANFIS的装甲车辆蓄电池SOH预测方法,着重分析了该方法的总体流程和训练过程。着眼装甲车辆的工作环境,在放电深度和输出能量的基础上,引入海拔和温度作为模型的输入。在Matlab的实验结果表明,GA-ANFIS相比ANFIS测试数据误差减小47.6%,四输入GA-ANFIS相比两输入GA-ANFIS测试数据误差减小51.2%,验证了方法的有效性。

    Abstract:

    In order to keep the armored vehicles safe and reliable, it is very important to improve the ability of predicting the state of health of lead-acid batteries. In this paper, a method of SOH prediction for armored vehicle batteries based on GA-ANFIS is proposed, which combines genetic algorithm with adaptiveSnetwork-based fuzzy inference system. The overall process and training process of the method are emphatically analyzed. Aiming at the working environment of armored vehicles, elevation and temperature are introduced as the input of the model on the basis of discharge depth and output energy. The experimental results in Matlab show that the error of GA-ANFIS is 47.6% less than that of ANFIS, and that of four-input GA-ANFIS is 51.2% less than that of two-input GA-ANFIS.

    参考文献
    相似文献
    引证文献
引用本文

朱永黎,常天庆,刘鹏.基于GA-ANFIS的装甲车辆蓄电池SOH预测方法计算机测量与控制[J].,2019,27(8):114-119.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-12-19
  • 最后修改日期:2019-01-25
  • 录用日期:2019-01-25
  • 在线发布日期: 2019-08-13
  • 出版日期:
文章二维码