基于IBA-LSSVM的光合细菌发酵软测量
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP301

基金项目:

镇江市重点研发计划(SH2017002)(微生物关键参量软测量与控制技术及装置研发)


Soft sensor of photosynthetic bacteria fermentationbased on IBA-LSSVM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对光合细菌(PSB)发酵过程活菌浓度难以在线检测,离线测量又存在很大延时及易染菌的问题,提出一种基于改进蝙蝠-最小二乘支持向量机(IBA-LSSVM)的软测量建模方法。本文先对BA的速度更新公式进行改进,且将差分进化算法(DE)的变异机制引入BA,增加了种群多样性,进而提升了BA算法的全局及局部搜索能力,然后构建了活菌浓度的IBA-LSSVM软测量模型,并与BA-LSSVM软测量模型进行对比。仿真结果表明,改进的模型相较于BA-LSSVM模型有着更好的学习能力和预测性能,测量误差为0.1358,可为光合细菌发酵过程的优化控制提供准确有效的指导,有一定的实际应用价值。

    Abstract:

    In view of the living cell concentration is difficult to measure on line in photosynthetic bacteria(PSB)fermentation process and the off-line measurement is accompanied by large time-delay error and easy to stain bacteria , a soft sensor model based on IBA-LSSVM was proposed. The velocity equation of the BA algorithm was improved and the variance mechanism of DE algorithm was introduced in the BA algorithm. Thus, the diversity of the population can be increased and the global and local searching ability of the BA algorithm can be enhanced. Furthermore, the IBA-LSSVM soft sensor model was established for the living cell concentration and compared with BA-LSSVM soft sensor model. Finally, the simulation results showed that the improved model was better learning ability and prediction performance than BA-LSSVM, the measurement error is 0.1358. The improved model could provide accurate guidance for the photosynthetic bacteria fermentation control optimization. This model has certain practical value.

    参考文献
    相似文献
    引证文献
引用本文

朱湘临,陈威,丁煜函,王博,朱莉,姜哲宇,宋彦.基于IBA-LSSVM的光合细菌发酵软测量计算机测量与控制[J].,2019,27(6):41-44.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-11-29
  • 最后修改日期:2018-12-15
  • 录用日期:2018-12-17
  • 在线发布日期: 2019-06-12
  • 出版日期:
文章二维码