负荷实时跟踪精细化氨法脱硫智能控制系统
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

上海市张江国家自主创新重点项目


Load Real-time Tracking Refined Ammonia Desulfurization Intelligent Control System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统的氨法脱硫控制系统存在延迟时间较长、无法实现实时跟踪负荷的局限性。针对该问题提出的Smith预估补偿装置,通过抵消系统中的纯滞后环节来提高控制系统的实时性。虽然该方法有效解决了长延时问题,但系统中PID参数调整采用的是试错法并依赖于调试操作经验,偶然性和因人而异导致系统波动较大。本文提出了BP(back propagation)神经网络的PID参数整定方法,该方法能实现对任意非线性函数的逼近,通过神经网络学习得到最佳的比例、微分、积分系数组合。运用该方法建模并进行长时过程控制仿真,结果验证了算法的可行性,其误差小,大幅提高了氨法脱硫系统的实时性和稳定性,实现了智能化精准控制效果。

    Abstract:

    The traditional ammonia desulfurization control system has a long delay time and cannot realize real-time tracking of load. Aiming at this problem, Smith's predictive compensation device is proposed to improve the stability of the control system by canceling the pure hysteresis in the system. Although this method effectively solves the problem of lag, the tuning of the PID parameters in the system still uses the trial and error method. This method is mainly adjusted by experience, which is very time consuming and has no clear judgment standard. A method for PID parameter tuning of BP (back propagation) neural network is proposed for parameter tuning of PID. BP neural network can achieve approximation of arbitrary nonlinear functions. Through neural network learning, the best combination of proportional, differential and integral coefficients is obtained to achieve the best control effect of BP_PID.

    参考文献
    相似文献
    引证文献
引用本文

郭玲妹,马立新,梁克顺.负荷实时跟踪精细化氨法脱硫智能控制系统计算机测量与控制[J].,2019,27(6):66-69.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-11-20
  • 最后修改日期:2018-12-10
  • 录用日期:2018-12-10
  • 在线发布日期: 2019-06-12
  • 出版日期:
文章二维码