基于LSTM的PM2.5浓度预测模型
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP399

基金项目:


Prediction of PM2.5 concentration based on LSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着近年雾霾天气的频繁出现,空气质量开始越来越受到公众关注。PM2.5浓度指数是判断空气质量的重要指标,如何根据历史数据有效地预测空气中PM2.5浓度,具有很高的应用价值。分析以往空气质量数据表明,PM2.5浓度有明显的非线性和不确定性波动,很难用传统机器学习算法有效地预测。本文基于LSTM循环神经网络,依据过去20小时采集的空气数据,预测未来5小时的PM2.5浓度指数。实验结果表明,LSTM可以有效地捕获空气质量的时序特征,较准确预测出未来时刻的PM2.5浓度指数。

    Abstract:

    With the frequent occurrence of smoggy weather in recent years, air quality has begun to receive more and more public attention. The PM2.5 index is an important indicator for judging air quality. How to effectively predict the PM2.5 concentration in the air based on historical data, which has application value. And analysis of previous air quality data show that PM2.5 concentration has obvious nonlinearity and uncertain volatility, which is difficult to predict effectively with traditional machine learning algorithms. Based on the LSTM (Long Short-Term Memory) Recurrent Neural Network (RNN), this paper predicts the PM2.5 concentration for the next 5 hours based on the air data collected over the past 20 hours. Experiments show that LSTM can effectively capture the feature of time series for air quality and accurately predict the PM2.5 concentration in the future.

    参考文献
    相似文献
    引证文献
引用本文

段大高,赵振东,梁少虎,杨伟杰,韩忠明.基于LSTM的PM2.5浓度预测模型计算机测量与控制[J].,2019,27(3):215-219.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-10-09
  • 最后修改日期:2018-10-22
  • 录用日期:2018-10-22
  • 在线发布日期: 2019-03-15
  • 出版日期:
文章二维码