基于级联端对端深度架构的交通标志识别方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学(61703054);陕西省重点研发计划重点项目(2018ZDXM-GY-044);装备预研教育部联合基金(6141A02022322);高等学校学科创新引智计划项目(B14043);中央高校基本科研业务费高新技术研究培育项目(300102248202)


A method of traffic sign recognition based on the cascade and end-to-end depth architecture
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    交通标志的正确识别是智能车辆规范行驶、道路交通安全的前提。为解决智能车采集目标图像模糊、分辨率低,造成识别精度低且时效性差的问题,构建一种基于级联深度网络的交通标志识别模型,该模型级联超分辨率处理网络ESPCN与目标检测识别网络RFCN,ESPCN网络提高输入采集图像的分辨率,为低分辨率图像实现超分辨率处理,RFCN网络提取图像全局特征,实现交通标志的检测与分类识别。平衡采样及多尺度的训练策略结合数据增强的预处理方法,增强了网络模型的鲁棒性及扩展性。经实验验证,算法模型针对常见交通标志识别率达到98.16%,召回率达到96.2%,且鲁棒性较好。

    Abstract:

    The correct identification of traffic signs is a prerequisite for smart vehicles to regulate driving and road traffic safety. In order to solve the problem that the target image of the smart car is blurred and the resolution is low, resulting in low recognition accuracy and poor timeliness, a traffic sign recognition model based on cascading depth network is constructed. The model cascades the super-resolution processing network ESPCN and target detection. Identifying the network RFCN, the ESPCN network improves the resolution of the input captured image, achieves super-resolution processing for low-resolution images, and extracts global features of the image from the RFCN network to realize the detection and classification of traffic signs. Balanced sampling and multi-scale training strategies combined with data-enhanced pre-processing methods enhance the robustness and scalability of the network model. The experimental results show that the recognition rate of common traffic signs is 98.16%, the recall rate is 96.2%, and the robustness is good.

    参考文献
    相似文献
    引证文献
引用本文

樊星,沈超,徐江,连心雨,刘占文.基于级联端对端深度架构的交通标志识别方法计算机测量与控制[J].,2019,27(4):143-148.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-09-30
  • 最后修改日期:2018-11-06
  • 录用日期:2018-11-07
  • 在线发布日期: 2019-04-26
  • 出版日期:
文章二维码